

Environmental, economic and social impacts of use of sewage sludge on land

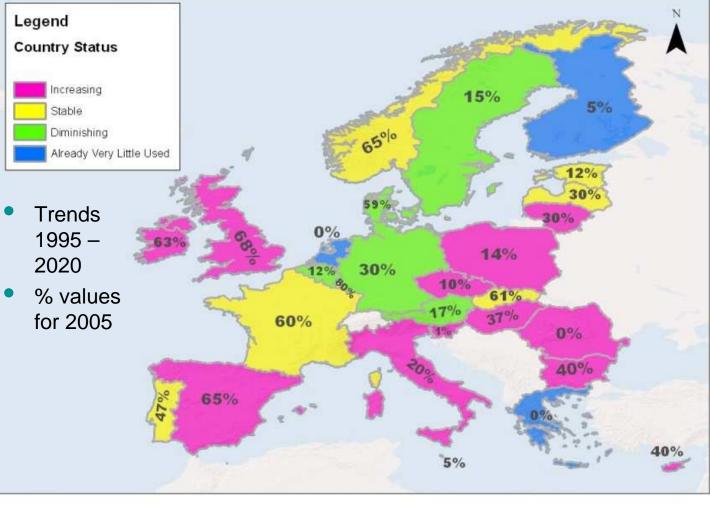
Roderick Palfrey Senior Microbiologist WRc plc, Swindon, UK

Study carried out for DG Environment by a consortium of WRc, RPA and Milieu, completed in April 2010

•Disclaimer – this presentation was derived from work carried out for the European Commission, but does not necessarily represent the position of the Commission

Use of sewage sludge on agricultural land

- The Sewage Sludge Directive (86/278/EEC)
 robust and flexible regulation provides for treatment, sludge and soil quality standards, and agricultural controls
 - Treatment requirements undefined
 - Metals limit values defined for sludge and soil (Cd, Cu, Ni, Zn, Pb, Hg, Cr)
 - Restrictions on time between application and land use
- "Double barrier" principle to protect human and environmental health


Sludge use on agricultural land

What has changed since 1986?

- Public concerns leading to different MS restrictions
- Other EU Directives
- Increased sludge in all MS (EU15 & EU12) due to:
 - Increased population (493m in 2007; 514m in 2020)
 - Increased sewage effluent quality requirements
 - Increased connections to sewers and treatment (to equivalent of 671m pe)
- Competition with other organic materials
- Reduced range of outlets (landfill limits, no sea disposal)
- Greenhouse gases and energy recovery now more important

Organic materials available in the EU

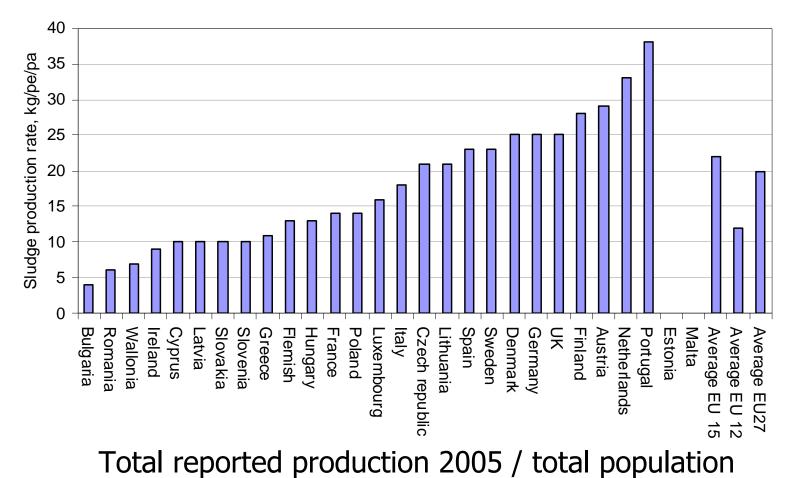
Sewage Sludge
10M tonnes dry solids (tds) per year in 2006
12.8M tonnes dry solids per year in 2020

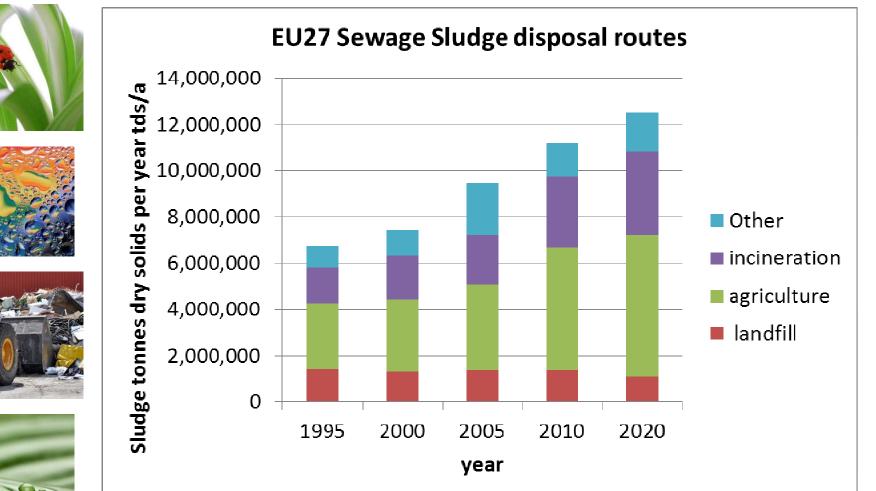
Biowaste (130M tds/pa)

Farm wastes (180M tds/pa)

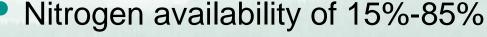
Industrial wastes (15M tds/pa)

Sludge production rates





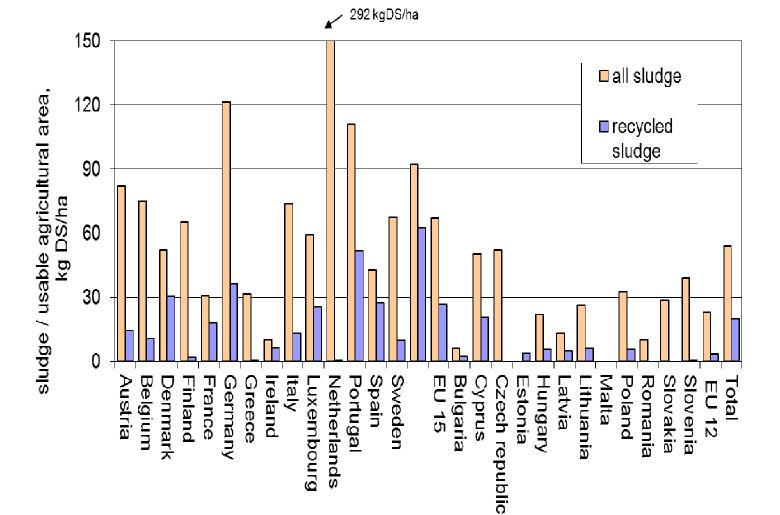
Sludge outlets – all routes to 2020


Agricultural value

- Depends on treatment, availability of ammonia
- Maximum N loading of 250kg/ha/year, less in nitrate vulnerable zones
- Sludge required to meet crop N requirement may be greater than P requirement
- Phosphorus availability of 50%
 - May be limited by soil P index
 - Long term P release is not well established

Sustainable source of Phosphorus

Agricultural recycling rates



Impacts of recycling sludge to land

Emissions	Impacts
Pollutant volatilisation to air	Human health impactsEcosystem degradation
Emissions of pollutants to surface water	Human healthDecrease in catchment quality
Emissions of pollutants to soil	 Human health impacts Livestock health Ecosystem degradation Soil micro-organisms reduction Decrease in groundwater quality Decrease in soil value
Odour	Social acceptanceAmenity impactsPublic anxiety
Transportation	• Exhaust emissions due to transportation

Reductions in metals content of sludges

	Potentially toxic elements (PTEs) concentrations, mg/kg ds							
	PTE	UK soil, median	UK sludge 1982/3	UK sludge 2006	UK % reduction	EU sludge 2006	EU sludge range	
	Cd	0.6	9	1.3	85	1.9	0.4-6.9	
	Cu	26	625	295	53	207	72-356	
	Ni	34	59	30	49	27	11-66	
T	Zn	60	1205	574	52	715	332-1235	
	Pb	29	418	112	73	52	8.9-114	
_	Hg	0.1	3	1.2	60	1.5	0.2-4.6	
63	Cr	84	124	61	51	50	14-127	
6.0000								

Greenhouse gas emissions by Sludge processes

Treatment / Disposal Option	Contributions from different operational sources (all expressed as kgCO ₂ eq/tRawDS)							
	Gas use	Electri cal energy	Consum ables	Trans port	CH₄ from process & agriculture	N ₂ O from process & agriculture	Fertiliser displace ment	Total
Thermal hydrolysis, anaerobic digestion, dewater, agriculture	0	-222	97	7	124	84	-114	-25
Two stage anaerobic digestion, dewater, agriculture	0	-177	100	9	118	90	-123	16
Thermal destruction of raw sludge	0	-156	84	1	0	308	0	236
Digestion, thermal destruction	0	-165	108	1	100	318	0	363
Anaerobic digestion, dry, agriculture	357	-206	106	3	465	101	-137	689

Sludge processing and recycling costs

	Sludge process and recycling costs, €/tonne dry solds					
Type of Costs	Landspreading			Landfill	Incin	eration
	Digested	Dewatered	Compost		Mixed	Mono
Internal costs	193	248	365	300	290	374
Internal benefits (savings in fertiliser)	-63	-63	-92	0	0	0
Net internal costs	129	185	273	300	290	374
Quantifiable external costs (EU15 average)	11	7	13	9	41	37
Quantifiable external benefits (use of fertiliser)	-6	-7	-6	0	0	0
Net external costs	5	0	7	9	41	37
Net costs (€/tds)	134	185	280	309	332	411

Estimated total for 11.8m tds/year = €2950million per year

Directive revision options

21	
	V

- Main areas:
 - Changes to metals in sludge or in soil
 - Introduction of organic substance standards
 - Introduction of pathogen concentration standards
- Subsidiary:
 - Provision of information on nutrient content of sludge
 - Demonstration of stabilised status of sludge
 - Introduction of process monitoring schemes
 - Changes to crop application conditions
 - Changes to quality monitoring and sampling schemes

Sludge Metals concentrations in options

Cd

Cr

Cu

Hg

Ni

Pb

Zn

Sludge metal concentrations						
	Option 1	Option 2	Option 3	MS average		
	(current)			values >		
				Option 3		
	mg/kg	mg/kg	mg/kg			
	20-40	10	5	1		
	-	1000	150	0		
	1000-1750	1000	400	0		
	16-25	10	5	0		
	300-400	300	50	1 – 2		
	750-1200	750	250	0		
	2500-4000	2500	600	9		
	No value set	From CEC	Most MS have limit			
	for Chromium	2003 - draft	concentrations	> (2 x option 3)		
		directive	concentrations			
		revision				

Sludge organic compounds

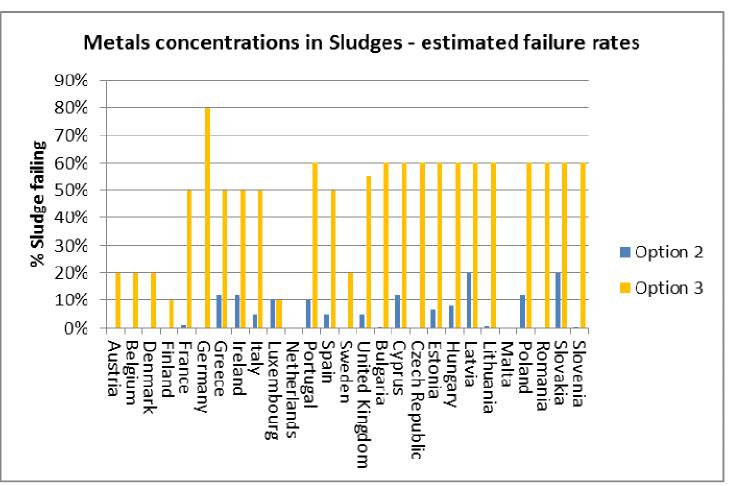
Sludge organics concentrations

	Option 2	Option 3	UK means ²	NRW proposed limits ¹
	mg/kg	mg/kg	mg/kg	mg/kg
Poly aromatic hydrocarbons, PAH	6	6		< 0.4
Poly chlorinated biphenyls, PCB	0.8	0.8	0.22	< 0.05
Polychlorinated dibenzodioxins/f uranes, PCDD/F		100 ng ITEQ/kg	36.5	2 – 10 ng ITEQ/kg
Linear alkyl benzone sulphonates, LAS		5000	5560	1100 - 1200
Nonylphenol + NPethoxylates, NPE		450	351	5 - 10

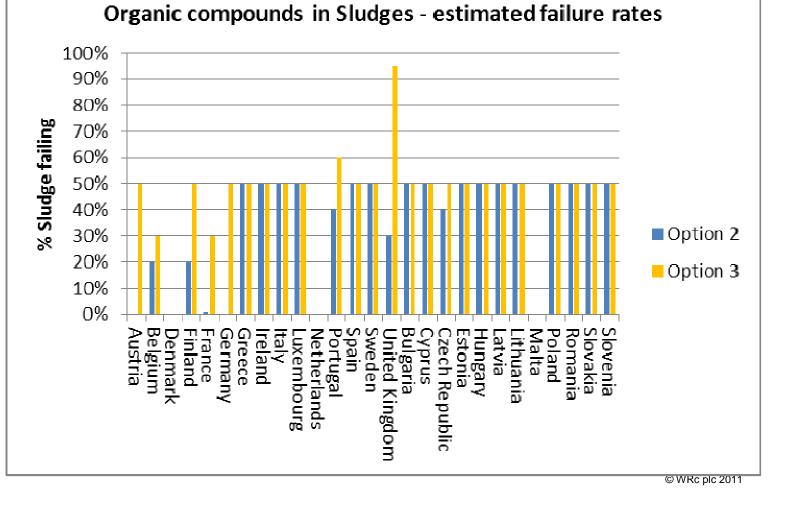
Pathogens in sludge

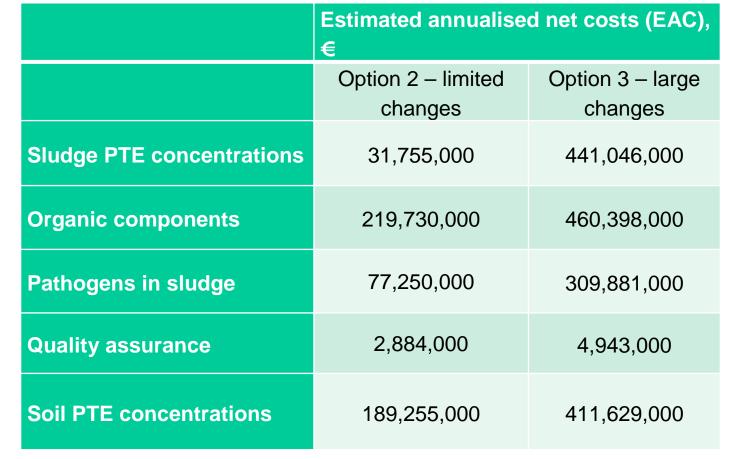
Option 2	Option 3
Treated sludge	Advanced treated sludge
 E.coli - < 5 x 10⁵ cfu/g wet sludge 	 <i>E.coli</i> - 99.99% reduction and < 10³ cfu / g ds. <i>Salmonella</i> – zero in 50g wet wt sludge. <i>Clostridium perfringens</i> - < 3 x 10³ spores / g ds checks using <i>Ascaris</i> and <i>Salmonella</i>
Achieve with traditional treatments	Achieve with advanced treatments

Estimated failure rates for Sludge metals options



Estimated failure rates for Sludge organic compound options




Individual component costs for changes to requirements

Total costs of options, high and low scenarios

Note: Present value, PV, discounted at 4% for the period 2010 - 2020

Estimated current total for 11.8m tds/year = €2950million per year

Conclusions

- Sewage sludge use on agricultural land is widely and safely used in the EU
- There are clear environmental benefits to which values can be assigned
- There are also some costs
- New soil metals standards would be unduly restrictive
- No clear argument for setting new organic compound standards
- No evidence that a complete ban can be justified
- There is support for retention of the Directive no repeal

Thank-you for your attention

ENVIRONMENTAL LAW & POLICY

- Contact: rod.palfrey@wrcplc.co.uk; telephone 0(44)1793 865119
- WRc plc, Frankland Road, Blagrove, Swindon, SN5 8YF, England.

Roderick Palfrey, Anne Gendebien, Bob Davis

Tony Zamparotti, Judith Middleton

Rocio Salado, Daniel Vencovsky