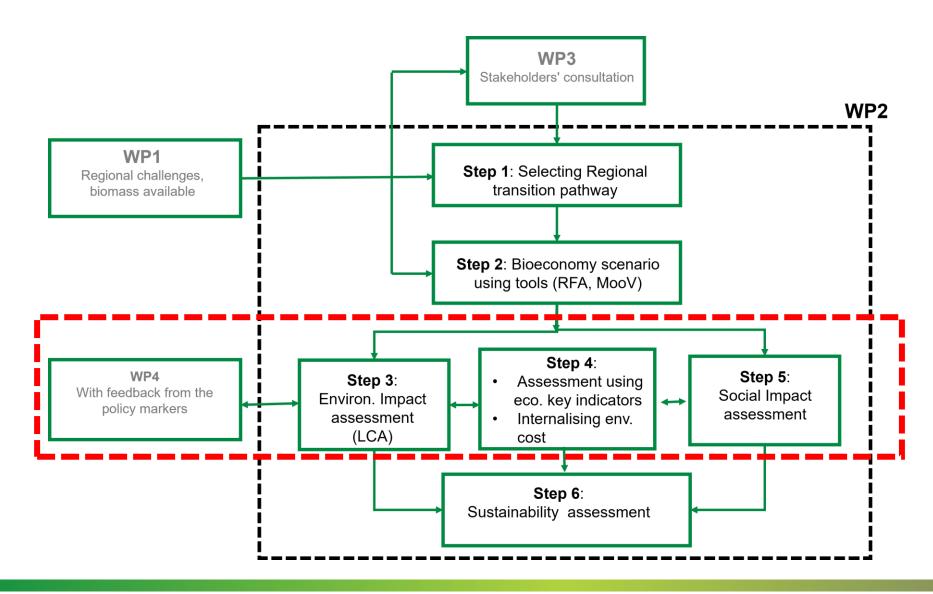


2nd working group: Environmental sustainability assessment in BIOTRANSFORM pilot regions

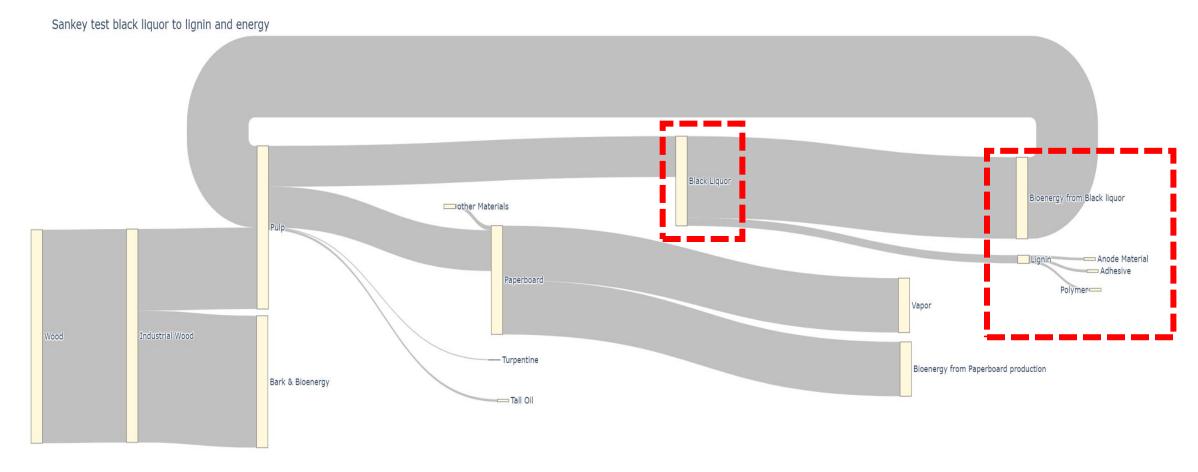
Luxembourg Institute of Science and Technology (LIST)

Gitanjali Thakur, PhD


Contents:

- WP2: Assessment framework
- Regional transition pathway
- Environmental impact assessment of Finish transition pathway

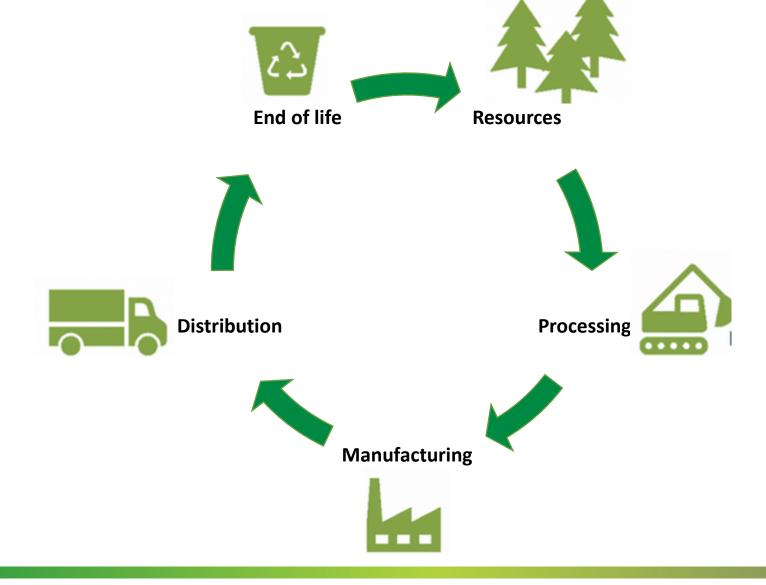
Work package (WP) 2 in BIOTRANSFORM:


BIOTRANSFORM: Pilot regions and bioeconomy scenario

	Region	Scenario
Ē	Finland	Lignin extraction from paper and pulp industry
	West Macedonia (Greece)	Using sewage sludge to produce green hydrogen
	North Rhine-Westphalia (Germany)	Using organic feedstocks (beet sugar leaves) for chemical industry
	Northen Burgenland (Austria):	Creating renewable goods from straw, vineyards residues, reed and sludge from lakes
	Andalusia (Spain)	Biomass from olive sector (olive pomace, olive stones, pruning waste) to create high-value renewable goods and bioenergy
	Charles SPA region (Czech Republic)	Valorisation of food waste

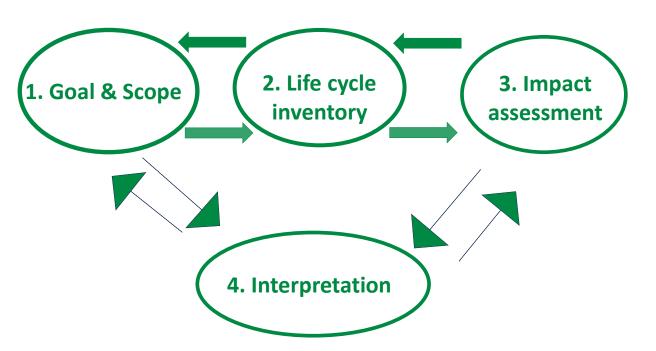
Finnish bioeconomy scenario:

Finnish bioeconomy scenario 1: Anode using lignin


Lignin as anode material

1 kg of anode= 0.96 kg of lignin replacing synthetic graphite + water +electricity + additives

0.96 kg of synthetic graphite 0.96 kg of **petroleum coke** + 0.24 kg of coal tar


Life cycle thinking:

Life cycle impact assessment:

1. Goal and scope: To assess the environmental impact for producing **1 kg of anode using lignin** extracted from paper and pulp industry in Finland

2. Life cycle inventory:

- 0.96 kg of lignin (1kg lignin -1.5kwh electricity)
- 1.47 kwh of electricity
- 0.01kg carbon black
- 0.7835 kg deionised water
- Chemical producing factory
- 0.03 kg carboxymethyl cellulose powder

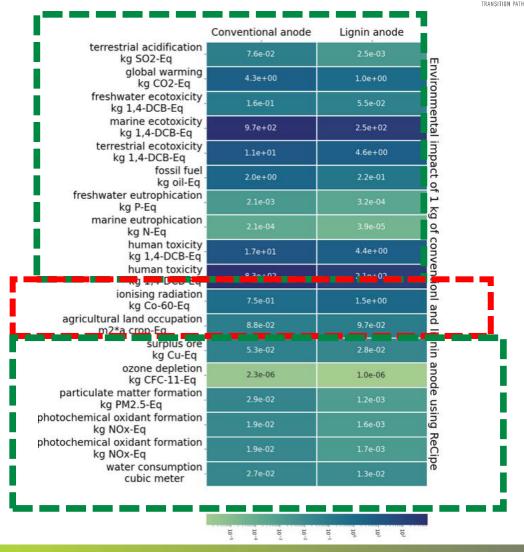
Life cycle impact assessment (LCIA): Indicators

- Environmental footprint (EF) v3.1 method of assessing life cycle impact
- Indicator value = emission in the compartment * characterisation factor

No.	Proposed EF impact category	Unit (environmental impact category indicator)
1	Climate change, total	GHG emissions, GWP100 (kgCO2eq)
2	Water use	Water stress (m3 of H2O equivalents)
3	Eutrophication, freshwater	Fraction of nutrients reaching freshwater end compartment (P)
4	Eutrophication, marine	Fraction of nutrients reaching marine end compartment (kg N eq)
5	Material footprint	Material footprint (tonnes of cultivated biomass, extracted mineral ore and fossils)
6	Acidification	Accumulated Exceedance (mol H+ eq)
7	Eutrophication, terrestrial	Accumulated Exceedance (mol N eq)

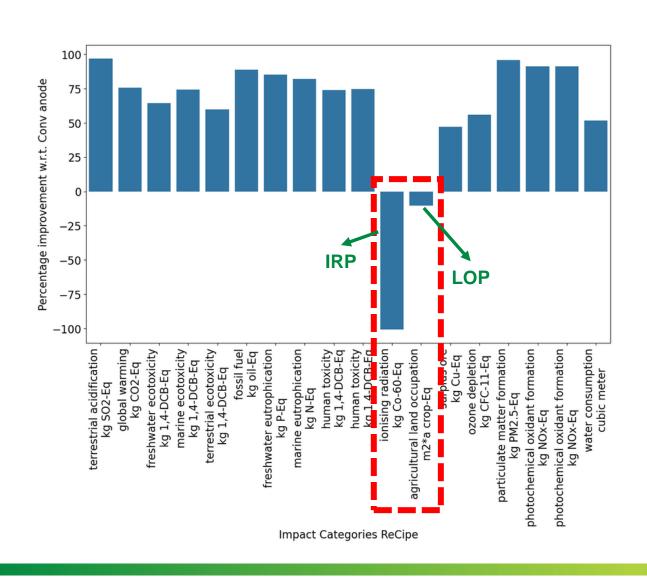
No.	Proposed EF impact category	Unit (environmental impact category indicator)
8	Human toxicity, cancer	Comparative Toxic Unit for humans (CTUh)
10	Particulate matter	Impact on human health (DALYs)
11	Photochemical ozone formation, human health	Tropospheric ozone concentration increase (kg NMVOC eq)
12	Land-use related biodiversity loss	(Global m3 PDF years)
13	Ionising radiation	Human health effect
14	Resource use, fossils	Kg oil-eq
15	Resource use, mineral and metals	kg Cu-eq
16	Ozone depletion	kg CFC-11 equivalent

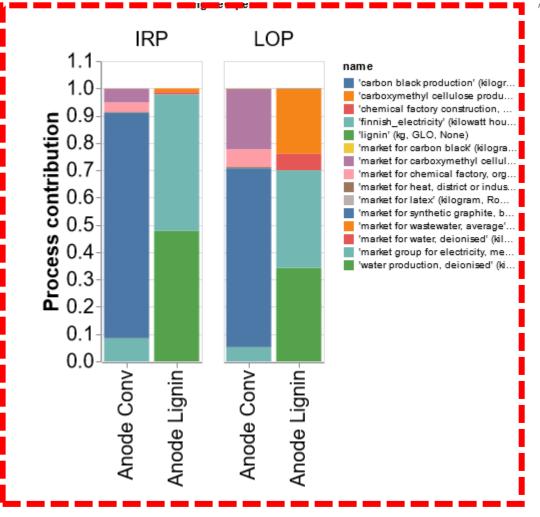
Environmental impact of producing anode using lignin in comparison to the conventional anode?


LCIA: Total Impacts

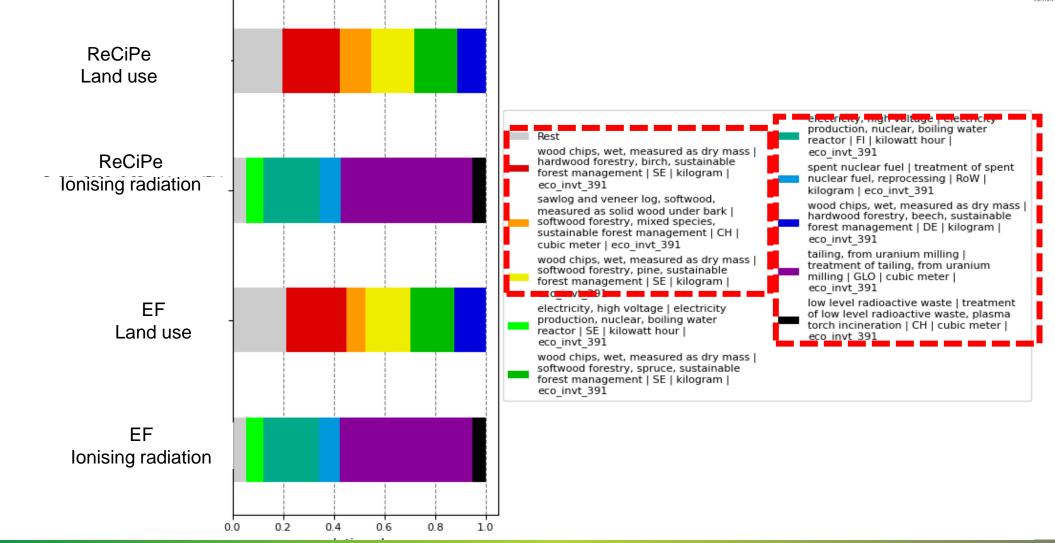
BIOTRANSFORM

Environmental footprint, LCIA method


	Conventional anode	Lignin anode
climate change kg CO2-Eq	4.6e+00	8.1e-01
climate change: land use and land use change kg CO2-Eq	9.2e-03	7.1e-03
ecotoxicity: freshwater CTUe	2.6e+01	2.6e+00
energy resources: non-renewable MJ, net calorific value	9.6e+01	2.6e+01
eutrophication: freshwater kg P-Eq	2.1e-03	3.2e-04
eutrophication: marine kg N-Eq	7.3e-03	7.1e-04
eutrophication: terrestrial mol N-Eq	7.4e-02	7.3e-03
human toxicity: carcinogenic CTUh	7.6e-09	6.5e-10
human toxicity: non-carcinogenic CTUb	4.2e-08	1.3e-08
ionising radiation: human health kBq U235-Eq	5.9e-01	1.2e+00
land use dimensionless	1.3e+01	1.1e+01
material resources: metals/minerals kg Sb-Eq	2.0e-05	9.7e-06
ozone depletion kg CFC-11-Eq	1.2e-07	2.4e-08
particulate matter formation disease incidence	1.3e-06	2.7e-08
photochemical oxidant formation: human health kg NMVOC-Eq	3.2e-02	2.4e-03
water use m3 world eq. deprived	1.1e+00	5.5e-01


ReCiPe 2016 v1.03, LCIA method

LCIA:Comparative impact



LCIA: Impact of processes

Interpretation:

Environmental impact is producing anode using lignin in comparison to conventional anode:

- has lower impacts for most of the impact categories (climate change, water use, human toxicity etc.)
- has higher for two impact categories (ionising radiation potential, land use)

Finnish electricity mix \rightarrow contribution from nuclear electricity

→ contribution from forestry which has higher impact for land use

Now based on the regional priority the policy makers can decide

Environmental sustainability assessment: Anode production

From one mill we can obtain 300,000t of lignin

312 500t of anode

Environmental:

Reduced emissions: **1184 Mt** CO2-equivalent

Reduced human toxicity: 0.0021171875 kg DCB eq

Increased ionizing radiation potential: 187.5Mt kBq U235-eq

Increased Impact of land use: 937.5 m2 crop-equivalent

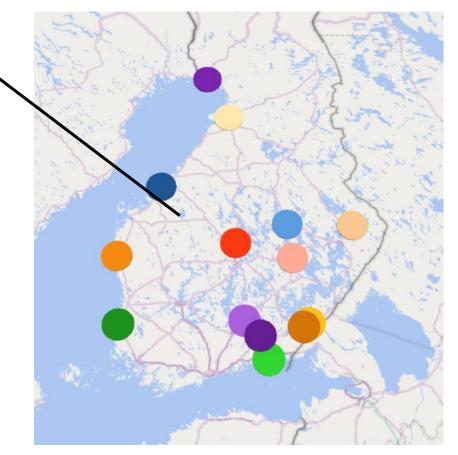


Fig: Location of Finnish paper 14 paper mills

Questions and Answers

Contact Details

Gitanjali thakur

Luxembourg Institute of Science and Technology Gitanjali.thakur@list.lu

Appendix: background data

- •Ecoinvent is recognized as the world's leading supplier of consistent and transparent life cycle inventory data
- •The database contains more than 3500 industrial processes, and these are extensively documented
- •Data are available for the following sectors:
 - Energy, transport, building materials, chemicals, washing agents, paper & board, agriculture and waste management.
- •The database is described at <u>www.ecoinvent.ch</u>

eco nvent

Follow us ON SOCIAL MEDIA

Website: https://www.biotransform-project.eu/

Linkedin: https://www.linkedin.com/company/biotransform-project-eu/

Twitter: https://twitter.com/BIOTRANSFORM

Facebook: https://www.facebook.com/profile.php?id=100090093344387